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The spectral energy dissipation of finite-depth ocean waves, due to friction in the 
turbulent bottom boundary layer, is investigated using a formal parameterization of 
the turbulent stress. This formal parameterization is a generalization from both the 
eddy-viscosity model and the drag law. The eddy-viscosity model is linear in the 
random wave phase, whereas the drag law is nonlinear. The phase dependency of the 
stress is found to determine the form of the dissipation expression. A spectral eddy- 
viscosity model developed by the author, an eddy-viscosity model based on an 
‘equivalent’ monochromatic wave given by Madsen et al. (1989), the drag law as 
applied by Hasselmann & Collins (1968) and an approximation to the Hasselmann 
& Collins expression given by Collins (1972) are discussed within the framework of 
the formal parameterization. Some examples of applications are given. 

1. Introduction 
Surface gravity waves, with a wavelength which is long compared to the water 

depth, give rise to a thin wave boundary layer a t  the sea bottom. This boundary 
layer is characterized by a steep vertical gradient of the horizontal velocity, and is 
generally turbulent under field conditions. When the bottom material consists of 
sand, the wave and sand motion will interact and ripples may form. These increase 
the bottom roughness experienced by the waves. The waves lose energy due to 
turbulent friction in the bottom boundary layer. 

One of the earliest studies on the monochromatic wave boundary layer is Kajiura 
(1968), who showed that the energy dissipation is to first order in wave steepness a 
function of the bottom stress only. Kajiura used a linear eddy-viscosity model, with 
a prescribed vertical profile for the eddy-viscosity coefficient, to  describe the 
turbulent stress. The eddy-viscosity model was extended by Grant & Madsen (1979) 
and by Christoffersen & Jonsson (1985) to a combined (monochromatic) wave- 
current flow. Grant & Madsen (1982) developed an eddy-viscosity model for the 
sediment-wave interaction. Nonlinear eddy-viscosity models, with time-varying 
coefficients, were developed by Lavelle & Mofjeld (1983) and Trowbridge & Madsen 
(1984). The latter showed that the wave energy dissipation is adequately described 
using only the time-independent part of the eddy-viscosity coefficient. I n  all eddy- 
viscosity models analytical solutions are combined with iterative schemes. 

An example of a purely numerical model is that pu t  forward by Davies, Soulsby 
& King (1988), who determine the eddy-viscosity coefficient from the turbulent 
kinetic energy equation. The numerical model developed by Bakker & van Doorn 
(1979) uses the mixing-length hypothesis. The simplest turbulence model is the drag 
law, with an experimentally determined drag coefficient (see for example Jonsson 
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1980). Jonsson gives an extensive overview of previous experimental and theoretical 
studies on monochromatic-wave boundary layers ; references to more recent work 
can be found in Davies et al. (1988). 

The basic concepts of all turbulence models mentioned were originally developed 
for stationary, constant-stress boundary layers. Recent experiments (Hino et al. 
1983 ; Sleath 1987) with direct measurements of the turbulence characteristics in 
monochromatic-wave boundary layers show significant differences as compared to 
steady flows. Negative and time-varying eddy-viscosity coefficients had been found 
before (Horikawa & Watanabe 1968 ; Jonsson 1980). Unfortunately, a definite 
parameterization of the oscillatory turbulent bottom stress does not exist and 
modelling of the wave boundary layer is generally based on the closure schemes 
mentioned or on extensions thereof. 

The frictional energy loss of random ocean waves is an important dissipation 
mechanism in shallow-water areas. There has been surprisingly little research on the 
random-wave boundary layer, either theoretically or experimentally. The first paper 
on bottom friction which deals explicitly with the stochastic nature of the wave field 
is Hasselmann & Collins (1968). They substitute a quadratic drag law in the general 
expression for the wave energy dissipation in terms of the bottom stress. Their theory 
predicts a pronounced influence of the mean current on the wave energy dissipation, 
which was not confirmed by measurements (JONSWAP 1973). Hasselmann & Collins 
proposed the use of a constant drag coefficient. An estimate of the value of the drag 
coefficient for different data sets is given by Shemdin et al. (1978) ; the values range 
from 0.006 to 0.1. Notwithstanding these drawbacks the Hasselmann & Collins 
expression is used in various wave forecasting models, mostly in a simplified version 
given by Collins (1972). 

More sophisticated turbulence models have been developed for the oscillatory 
boundary layer since the appearance of Hasselman & Collins’ paper. An obvious 
alternative for the drag law is the linear eddy-viscosity model. This parameterization 
allows an analytical solution of the boundary-layer equations. It is therefore easy to 
apply the subsequent expression for the energy dissipation in a wave forecasting 
model. 

The dissipation expression, which can be computed from the eddy-viscosity model, 
differs significantly from the Hasselmann & Collins expression. This is somewhat 
surprising, as the eddy-viscosity concept is compatible with a drag law for stationary 
flows. For monochromatic waves there is a phase shift in the eddy-viscosity model 
between the bottom stress and the free-stream velocity, which does not appear in the 
drag law (see for example Visser 1988). In the case of a random wave field the 
discrepancy between these two concepts is even larger. 

In the present paper the energy dissipation due to bottom friction is studied using 
a formal parameterization of the turbulent stress, which is a generalization both from 
the eddy-viscosity model and from the drag law. The differences between the two 
models can be explained from the generalized parameterization. They are partly due 
to the different ways in which the stress is related to the non-dimensional bottom 
roughness length. More important, is whether the stress depends linearly or 
nonlinearly on the random wave phase. 

Two eddy-viscosity models and the drag law are discussed as special cases of this 
generalized parameterization. One eddy-viscosity model was developed by the 
author, the other by Madsen, Poon & Graber (1989). The model by Madsen et al. 
differs in a number of respects from the present model. Moreover, their approach is 
directed at representing the random wave field by an ‘equivalent ’ monochromatic 
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wave, whereas the present model retains a spectral description. The present model is 
therefore more widely applicable; it can be used in complicated situations like a 
turning wind field or swell interacting with wind-sea, where the wave field cannot be 
represented by a monochromatic wave. 

The generalized parameterization does not take the purely numerical models into 
account. To investigate these models, one would have to consider them separately for 
selected cases. This was done for a number of combined monochromatic wavecurrent 
situations by Dyer & Soulsby (1988). 

In the present paper a theoretical framework is constructed for the dissipation of 
random ocean waves due to turbulent bottom friction. The dissipation is determined 
by explicitly computing the modifications in the fluid flow due to the presence of the 
boundary. This is done in terms of the (basically unknown) bottom stress and the 
(known) zero-order flow outside the boundary layer. Assuming that the stress can be 
parameterized in terms of the zero-order flow, the dissipation can be computed. 
Various approaches to the modelling of the turbulent stress (linear versus nonlinear, 
spectral versus ' equivalent ' monochromatic) will be discussed. 

Some examples of the application of the bottom friction models are also given. 
These show that a dissipation function based on the eddy-viscosity concept is a good 
alternative to the Hasselmann & Collins expression, which has been widely applied 
in wave modelling. A more extensive evaluation is given by Weber (1991). 

The plan of this paper is as follows. In  $2 the boundary-layer equations are 
derived, using linear wave theory. The basic expression for the energy dissipation in 
terms of the bottom stress is determined. In  $3  the generalized parameterization is 
defined and the structure of the dissipation function is analysed. Examples of the 
generalized parameterization are discussed in Q 4. Finally all results are summarized 
in $5.  All the calculus related to the averaging of random quantities is given in the 
Appendix. 

2. Wave energy dissipation as a function of the bottom stress 
2.1. The turbulent bottom boundary layer 

Consider an inviscid, incompressible fluid, with the velocity field given by the 
equations for conservation of mass and momentum, the condition of zero normal 
velocity at the bottom and at  the free surface and continuity of pressure across the 
free surface. In finite-depth water this velocity field has non-zero horizontal velocity 
components at the bottom, while in reality the viscosity of the water, however small 
it may be, imposes the no-slip condition. To fulfil this condition the concept of a 
boundary layer is needed : an essentially small region close to the bottom, where the 
horizontal velocity increases rapidly from zero at  the bottom to a finite value, 
determined by the outer flow, at the top. 

A boundary-layer Reynolds number can be defined by 

V 

Here U is a characteristic scale for the horizontal velocity, a? a characteristic length 
in the transverse direction and v the kinematic viscosity of the fluid (v x m2/s). 
I will consider flows with U > 0.1 m/s and d > 0.1 m, so that R > lo4. This implies 
that the boundary layer is fully turbulent for flows over a rough bed (Jonsson 1980). 
In the following only turbulent flows over rough surfaces will be considered. 
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1 
FIQURE 1. Definition of the coordinate system. 

A lengthscale k ,  can be associated with the roughness elements on the sea bed 
(sand grains, gravel, ripples). I n  the case of flow over a rough surface k,  is much 
larger than the lengthscale v/u* that characterizes the thickness of the viscous 
sublayer. Here u* is a velocity that represents the turbulence intensity. Therefore k ,  
is the only lengthscale for the flow close to the bottom. The no-slip condition is 
applied a t  a theoretical zero level k, /30,  where k ,  has to be determined 
experimentally as a function of the roughness elements (Schlichting 1955). I n  the 
case of rough turbulent flow the viscous stresses can be neglected everywhere. 

The turbulent stress tensor is an additional unknown in the equations for the fluid 
motion. Additional assumptions arc needed now to solve the equations. In this 
section the turbulent stress will be left as an unknown in the equations of motion. It 
will be shown that the equations suggest a certain form of stress parameterization ; 
this will be pursued further in $ 3 .  Examples will be treated in $4. I n  this section the 
wave energy dissipation due to friction in the turbulent boundary layer will be 
derived to first order in wave steepness as a function of the turbulent bottom stress. 

In  the following the (Reynolds averaged) velocity will be denoted by u = (ul, u2, v), 
the space coordinate by x = ( x ~ ,  x2, y) and the free surface by y = 9 (see figure 1) ; h 
is the water depth. The stress tensor is given by: 

7 -q= 7 - u, up 
P 

where p is the density of water and u; (i = 1 , 3 )  is the turbulent fluctuation in the 
velocity in the ith direction. The overbar stands for Reynolds averaging. For 
notational convenience p will be absorbed in the stress in the remainder of this paper. 

Correct to first order in wave steepness the fluid flow is given by 

w - u  = 0, 

(2.lu) 

with boundary conditions 

a t y = O :  9t = v ;  p - g p v  = 0 ( 2 . l b )  

a t  the bottom : ( 2 . l c )  

p is the pressure, t is time and g is the gravitational acceleration. I n  ( 2 . 1 ~ )  summation 
over repeated indices is implied. 

u1 = u2 = v = 0 
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2.2. An asymptotic expansion of the velocity 
The boundary layer is characterized by steep gradients in the vertical direction, but 
slow change in the horizontal direction. The ratio between the vertical lengthscale, 
say the boundary-layer thickness, and the horizontal lengthscale, say a wavelength, 
defines a small dimensionless parameter which will be denoted by 8. The steepness of 
the vertical gradients can be expressed explicitly by introducing a stretched 
coordinate z = ( y +  h)/S.  Variables which change rapidly through the boundary layer 
are made to  depend on z. It follows that 

a r a  
ay  aaZ'  
-=- -  

The velocity field can be written as the sum of an irrotational part, which depends 
on the original coordinate y ,  and a solenoidal part, which depends on the magnified 
coordinate z : 

u = V$+V x v ,  
where $ is the velocity potential and = (kl, k2, k3) is the vector stream function. 
The rotation in the velocity field is induced by the turbulent stress T ~ ~ .  Let the 
pressure be determined by the irrotational part : p = - ~ q 5 ~ .  The bottom boundary 
condition is applied at y = - h and z = zo = kN/(30S). 

The surface elevation and the velocity components are expanded in terms of 6 to 
determine an approximate solution of ( 2 . 1 ~ )  that is valid everywhere and that 
satisfies all boundary conditions. This composite asymptotic expansion is combined 
with a multiple-timescale method. (See Nayfeh 1973 for an overview of expansion 
techniques.) Thus the 0rder-P-l solution is valid for times up to order 1/S". The 
expansion reads 

(2.2) 

7 = 70+671+ ... , 
$ = $0+6$1+ ... , 
y=Sv1+ .... J 

7,  $ and v depend explicitly on a slow time variable s = at, as well as on the 
(ordinary) time t . 

The composite solution must reduce to the inviscid wave solution if the boundary- 
layer thickness tends to zero: 

lim u = V$O (for fixed y) 
840 

It follows from (2.3) that the stream function can be chosen such that yo = 0. 
The solution for the boundary-layer flow can be found by taking the limit S 4 0 for 
fixed z. 

One can assume that the vertical variations in the turbulent stresses are much 
larger than the horizontal variations, so that the stress gradients a7,,/az are the 
dynamically important quantities in (2.1 a) .  These are of zero order. Therefore the 
stress tensor elements are of order 6 a t  most (assuming all stresses to have the same 
order of magnitude). The shear stresses 7t3, which appear in the equations for the 
horizontal velocity, will be denoted by 7t( i  = 1,2), with 

7$ = s7;+ .... (2.4) 
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The zero-order and the order-b equations are found by substitution of the 
expansions (2.2) and (2.4) in the flow equations (2.1) and (2.3). The order-b equations 
are only given in so far as they are needed to determine the dependence of the surface 
elevation and the velocity on the slow-time variable s. 

Zero-order equations 1 

V2$0 = 0 ( 2 . 5 ~ )  

a t y = O :  $&+g$; = 0, 7: = g; ( 2 . 5 b )  

at  y = -h,z = z o :  q5: = 0, q5:,-$iz = 0,  q5",++& = 0 ;  ( 2 . 5 ~ )  

for fixed y :  

Order-6 equations : 
V2$' = 0, $it = -r;, $;t = 7; ;  

297: = &t+9$: 

$; + $iq - +L2 = 0 

a t  y = O , z +  0 0 :  

a t y = - h , z = z , :  

( 2 . 5 d )  

(2.6a) 

(2 .6b )  ' 

( 2 . 6 ~ )  

2.3.  Zero-order solution 

At zero order the inviscid, non-turbulent equations are recovered for ro and qb0. I am 
looking for wave solutions of the form 

7 0  = xq; = Zijat+C.C., 4 0  = &5; = c & + c . c . ,  (2.7) 
k k k k 

where C.C. denotes complex conjugate. From (2.5a-c) ij! and & are found as 

- . w cosh k(y + h) -o 
rk. 7; = lLkei4, $; = -1- 

k sinhkh 

Ok = k ,  x1 + k x -wt ,  with k = (k,, k,) the wavenumber vector with modulus 
k = ( k i + k i ) r  and w the radian frequency, given by w2 = gk tanh kh. The wave 
steepness is defined as A, k. 

The no-slip condition is not fulfilled by the inviscid solution given by $O. Therefore 
there is a zero-order correction to the inviscid tangential velocity denoted by 
~&(i = 1,2). Away from the bottom the correction velocity vanishes according to the 
boundary condition ( 2 . 5 d ) .  A t  zero order the presence of the bounclary modifies only 
the horizontal flow close to the boundary. The boundary-layer correction to the 
horizontal velocity gives rise to a vertical velocity component, because of continuity 
of mass. This 'correction' in the vertical velocity has to  be of order 6, since the 
vertical lengthscale is of order 6 compared to the horizontal lengthscale. The no-slip 
boundary condition, which is imposed on the zero-order horizontal velocity, thus 
results in the boundary condition (2.6,) on the order-b vertical velocity. 

1 2  

2.4.  Order-S solution 

The stresss el ,  which forces the rotational correction velocity in the boundary layer, 
is essentially unknown. Presumably t' is connected with the large gradient in the 
horizontal velocity in the boundary layer. It is assumed that t' can be parameterized 
in terms of the outer flow, which was written as a sum of harmonics of the form 
exp (iBk) in the previous section. The parameterization need not be linear. The stress 
is in a very complicated way nonlinear in, for example, the case of a drag law (see 
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$4.3); t' can therefore contain terms other than these 'first harmonics'. The terms 
in t' can be of the order 6 at most, but it is not possible to say a priori if there is any 
ordering among them. 

The boundary condition ( 2 . 5 ~ )  imposes terms of the form exp (8,) in ~ : ,  so that @ 
and 7: have to contain these too. The time dependence of possible other terms in $' 
is determined by the boundary condition (2.6b). Secular terms in the solution are 
avoided by equating the first harmonics on the right-hand side of (2.6b) to 2gyz. The 
aim of this section is to determine the slow wave-amplitude attenuation 7;. It is clear 
now that only the first harmonics have to be taken into account in order to do this. 
Only terms of the form exp (3,) will therefore be considered in this section. 

The horizontal derivatives of #O, which occur in the bottom boundary condition 
(2.5c), denote the zero-order free-stream velocity at  the top of the bottom boundary 
layer U = (Ul, U,, 0), with 

(2.9) 

Because of this boundary condition, the first harmonics of the stream function will 
be expressed in terms of o& as 

(2.10) 

The z-dependence of the (first harmonics of the) stress and the stream function 
cannot be solved from the present equations, as there is only one equation, (2.6a), for 
two unknowns. The express our ignorance of the stress and the velocity profile in 
the boundary layer. The boundary conditions ( 2 . 5 ~ )  and (2.5d) now reduce to 
conditions on the unknown function Tk: 

Gz(zo)  = ik, limT,, = 0. 
SJ.0 

(2.11) 

From the boundary-layer equations ( 2 . 6 ~ )  and from (2.10) the first harmonics of 
the stress can be expressed as 

(2.12) 

The first-harmonics part of $l is found from the Laplace equation (2.6a), the bottom 
boundary condition ( 2 . 6 ~ )  and (2.10) as 

(2.13) 1 
& = q ( z o )  e-k(u+h)Ok + C.C. 

Finally the slow wave-amplitude attenuation follows from (2.6b) and (2.13) as 

(2.14) 

This expression will be used in the next subsection to derive the frictional 
attenuation of the surface elevation spectrum. 

It is of interest to compute the order-6 velocity and pressure outside the boundary 
layer. The order4 vertical velocity is non-zero at the top of the boundary layer. In 
the interior of the flow the horizontal and the vertical scales are equal, so that an 
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order4 vertical velocity gives rise to an order4 horizontal velocity (through 
continuity of mass). The small change in the velocity field accompanies a small 
modification in the pressure. The modifications can be expressed in terms of the 
bottom stress, using (2.12) and (2.13), as 

The induced order4 bottom velocity is one order of magnitude smaller than the 
bottom stress, as the wave phase velocity o/k is typically 10m/s. The order-6 
bottom pressure equals the bottom stress, except for a phase lag. One can physically 
picture how these modifications, which are due to the presence of the boundary, 
slowly work their way up through the water column and finally modify the surface 
elevation. 

2.5. The spectral energy dissipation 

The random nature of the surface displacement is expressed by a random phase angle 
in (2.8): 

A, = Akei6k, 

where the amplitudes A k  are chosen such that = 2F(k) Ak, witah F(k)  the energy 
density at  the wavenumber k and Ak the wavenumber increment. The ek are 
independent and distributed uniformly over the interval (0,2x). The mean wave 
amplitudes are therefore zero. The second moment is only non-zero if a wave 
component is paired with its complex conjugate : 

(f f i * )  = p ( k )  Ak, (2.15) 

where ( * )  stands for ensemble averaging and * denotes the complex conjugate. 
Rice (1944, 1945) has shown that the distribution function of the surface elevation 

q approaches a normal law, as the number of wave components tends to infinity and 
Ak tends to zero. 

The linear series (2.7) is a first-order (in wave steepness) approximation to the 
random surface elevation. In order to satisfy the nonlinear boundary conditions at 
the sea surface one has to add terms which are quadratic in the wave amplitudes and 
higher-order terms. The dynamical effects of these nonlinear terms will be discussed 
briefly in 84.4.1. The distribution function of the nonlinear series for 7 is given by a 
Gram-Charlier series (Longuet-Higgins 1963). At first order this series reduces to the 
Gaussian distribution. There seems to be a second source of nonlinearities if the 
turbulent boundary layer at the bottom is taken into account : the stress term in the 
boundary-layer equations. The turbulent stress has however no direct effect on the 
zero-order flow outside the boundary layer. The free-stream velocity is therefore 
jointly Gaussian a t  fist order in wave steepness and zero order in 6. 

At present it is assumed that there is a parameterization of the stress in terms of 
the free-stream bottom velocity, as stated earlier. Under this assumption the stress 
inherits its stochastic characteristics from U .  This does not imply that the stress 
components are independent, as a given stress components can contain information 
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from different velocity components. It would be convenient to have an expression for 
the turbulent stress that fits in with an expansion in the wave steepness, as 
commonly applied in wave dynamics. This can be achieved by expanding the stress 
in a Taylor series around the velocity field with one specific component u k  set to zero 

(2.16) 
(Beran 1968) : a a 

7: = 7z(uk = 0) + o k T T : ( u k  = 0) + @ -7:( u k  = 0) +. . . . 
auk au; 

Multiplying this expression with 0; and averaging it follows that the coefficients of 
the first harmonics in z are given by 

(2.17) 

Terms of order (Ak)2 and higher, which follow from the fourth- and higher-order even 
moments, are neglected here. The Taylor expansion can be repeated for a second 
component U,. Multiplying this second expansion with @ and again averaging one 
finds the coefficients of the terms u k  U,. These are of second order in wave steepness 
and can be neglected here. 

Comparing (2.17) with the notation (2.12) for the first harmonics of the stress one 
finds that 

It follows that 

(2.18) 

Here the dot denotes the inner product. 

form as 
Substituting (2.18) back in (2.12) the turbulent stress can be written in an implicit 

(2.19) 

This formula will be used in $3  to determine the first-harmonics part of the stress in 
the case of a nonlinear parameterization. 

The spectral energy dissipation can now be computed from (2.14), using (2.9), 
(2.15) and (2.18), as 

a 
--F(k)Ak = - -* -T'(Z~) +c.c. 
as {i (a:k ) (2.20) 

The dissipation rate is thus found to be proportional to the bottom velocity 
spectrum, with the proportionality factor given by the functional derivative of the 
bottom stress. The same factor occurs in the implicit parameterization (2.19), which 
relates the stress to the free-stream velocity. The dependence of the dissipation rate 
on the form of the stress parameterization will be investigated in the next section, 
using (2.19) and (2.20). 

The dissipation (2.20) can be rewritten, using (2.9), (2.15) and (2.17), as 

(2.21) 
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This yields the dissipation by bottom friction as the work done by the bottom stress 
against the velocity component Uk. This could have been derived directly from the 
momentum equation (2.la),  as was done by Kajiura (1968) and Hasselmann & 
Collins (1968). The foregoing analysis has revealed the mechanism by which the 
dissipation takes place: the retardation of the horizontal velocity in the bottom 
boundary layer goes with an order-& modification in the velocity and the pressure in 
the outer flow. These extend up to the surface and slowly modify the surface 
elevation. Only the first harmonics of the bottom stress actually work on the mean 
flow. This was to be expected, as only the first harmonics of the velocity and the 
pressure in the outer flow were considered. 

The dissipation expression derived here is valid to first order in wave steepness, 
under very general conditions for the turbulent boundary layer. One assumes that 
the stress can be parameterized in terms of the outer flow, that the flow is fully rough 
turbulent and that the boundary-layer thickness is small compared to a wavelength. 

3. Generalized parameterization of the turbulent stress 
3.1. Definition of the generalized parameterization 

In this section a formal parameterization of the turbulent shear stress t = (7*, 7J is 
defined. The expression (2.12), which was derived in the previous section, suggests a 
certain form of stress parameterization. This form is used here. I will use a ‘linear’ 
and a ‘nonlinear ’ formulation for the stress ; the adjectives refer to the stochastic 
characteristics of the stress parameterization. A linear parameterization is linear in 
the random wave phase, so that the stress is jointly Gaussian. A nonlinear 
parameterization is nonlinear in the random wave phase ; it can be linearized using 
(2.19). A generalized expression is used here in order to investigate the dependence 
of the energy dissipation on the stochastic characteristics of the stress. 

Consider the following class of parameterizations : 

(3 . lb )  

with 70 = [7t (z0)  + 7;(z0)]t The velocity scale w / k ,  which occurs in (2.12), is replaced by 
the average friction velocity (7:) in the linear formulation ( 3 . 1 ~ ) .  An obvious 
generalization to a nonlinear parameterization is by using the instantaneous 
friction velocity 7:. In the nonlinear case (3.1 b)  the first-harmonics part of the stress 
can be determined from (2.19). With this definition of the velocity scale the 
parameterizations (3.1 a, b )  are generalizations from the eddy-viscosity model and 
the drag law. The unknown function q will be specified in $4, where these examples 
are discussed. In the remainder of this section only the bottom stress is considered, 
so that T, always denotes T k ( z 0 )  and t denotes ~(2,). 

A variable t = ( t l , t 2 ) ,  which is linear in the random wave phase, can be defined 
from (3.1 a, b )  as follows: 
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This implies that 

t, = - 7f (linear), ( 3 . 3 ~ )  (79  
(3.3b) 

t, and t,  are jointly Gaussian, as the velocity components ok are statistically 
independent. Their joint distribution function is 

t, = 7t (nonlinear). 
7; 

1 exp[ --(2+3)], 1 t2 
f(tl9 4 4 )  = 27c(g )% 

11 22 2 =11 =22 
(3.4) 

Without loss of generality the horizontal coordinate system at the bottom can be 
chosen such that rl2 = 0 and uZ2 5 vl1 (see the Appendix). 

The average derivatives of the bottom stress can now be computed from (3.1 a, b). 
Expressing these quantities in terms of t  instead of 2, they can be evaluated explicitly 
in terms of the variances gll and B,, by means of the known Gaussian distribution 
function oft .  All the details of the following calculations are given in the Appendix. 

3.2. The average derivatives of the bottom stress 
The computation of the average derivatives is straightforward in the linear case. It 
follows from ( 3 . 1 ~ ~ )  and ( 3 . 3 ~ )  that 

with 

Here F is a hypergeometric function (Abramowitz & Stegun 1965) with argument 
A = 1 - v22/c11 ; A  characterizes the directional spread of the bottom stress spectrum. 
(The left-hand side of (3.7) defines F3 on the right-hand side.) 

One then finds that 

1 

In the nonlinear case the computation is complicated by the factor 7; in (3.1 b) : 

with 

In (3.9) summation over repeated indices is implied. The off-diagonal elements of the 
tensor vu are zero in the coordinate system with (r12 = 0; the diagonal elements are 
given by 

vll = ( t + ! )  = 42(27t)iF(-$,$,2,A) =:c&F,(A) I (3.10) 
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0 0.5 1 .o 
Directional spread, A 

FIQURE 2. Fl, F, and Fa as functions of the directional spread A,O < A  < 1 by definition, 
see equations (3.7) and (3.10). 

with F and A as above. The functions F,, F2 and F3 are depicted in figure 2. It is clear 
from (3.7) and (3.10) that wll and wZ2 are proportional to the average friction velocity 
(7\), with proportionality factors which depend on the directional spread A .  

Finally 

= C~~~{F,(A) cos2 (6)+F2(A) sin2 (6)} q (3.11) 

where 8 is the angle between the wave direction and the main axis of the bottom 
stress spectrum. 

3.3. A characteristic scale for the turbulent velocity 
Comparing (3.11) with (3.8) one finds that the factor (7i), which appears in the linear 
formulation, is replaced by w,! k, k j / k 2  in the nonlinear formulation. Denote this factor 
by wt:  

Substituting this expression in (2.19) it is found that 

(3.12) 

(3.13) 

It follows that wt, which has the dimension of a velocity, characterizes the intensity 
of the first-harmonic stress components. Only these contribute to the energy 
dissipation, so that wt characterizes the intensity of the stress, as it works on the mean 
flow. In  the linear case the first harmonics (3.13) equal the definition ( 3 . 1 ~ ) ;  vt 



Random ocean wave dissipation 85 

depends on the stress only. In the nonlinear case (3.13) represents that part of the 
stress, which contributes to the energy dissipation. The nonlinear vt depends on the 
stress, as well as on the direction relative to the stress of the wavenumber k .  

Note that (3.13) parameterizes 7i = 6772, whereas 7: was considered in 52. The 
choice of the (average) friction velocity as a velocity scale implicitly defines the 
expansion parameter 8. Combining (3.13) with (2.12) the parameter 6 is identified as 

6 = vt k l w .  (3.14) 

The scale for the boundary-layer thickness is thus found as vJw, which hm to be 
small compared to a wavelength as stated earlier. 

The velocity vt is itself again a function of 6: the variances gll and g22, which define 
vt according to (3.8) and (3.11), depend on 6 through the function q ( z o ) ,  which occurs 
in (3.5). Given a surface elevation spectrum F ( k ) ,  a water depth h and a bottom 
roughness k,, vll and g22 are implicitly defined by (3 .5) .  They have to be determined 
iteratively. It can be proved that the iteration converges to a unique solution, if dl 
and ci2 are slowly varying functions of zo (Weber 1989). This condition implies that 
the iterative scheme cannot depend sensitively on the bottom roughness and 
therefore vt itself cannot depend sensitively on k,. 

3.4. The energy dissipation 
The energy dissipation can now be determined from (2.20) and (3.12). Rewriting the 
slow time derivative in terms of the original variable t ,  one finds 

vt F ( k ) ,  
a 
--F(k) = -{Tk(z0) + c.c.} at sinh 2kh 

(3.15) 

with vt defined as 

vt = gil F,(A) (linear), ( 3 . 1 6 ~ )  

vt = ~ : , { F , ( A )  cos2 (8) + F ~ ( A )  sin2 (8)) (nonlinear). (3.16b) 

Note that the energy dissipation depends on 6 through the timescale (vt k)-l, as well 
as through the lengthscale in z, = kN/(306) .  Since 6 has to be small, the dissipation 
timescale has to be large compared to a wave period. 

For later use I will define a dissipation coefficient C as 

c = v,{%(zo) + T,*(zo)}. (3.17) 

C has the dimension of a velocity. The dissipation coefficient depends on the 
spectrum through the characteristic velocity v,. 

A linear or a nonliner parameterization of the bottom stress results in the same 
basic expression (3.15) for the energy dissipation. The word ‘nonlinear ’ is misleading 
in this context, as it is the linearized stress which determines the dissipation. The 
nonlinearity of the stress parameterization only shows up in the form of vt. 
Comparing (3.16a) and (3.16b) there are two outstanding differences: 

(i) the nonlinear vt depends on the direction of a wave component, while the linear 

(ii) vt is determined from different iteration schemes, because of the different 

To illustrate the second point, consider the one-dimensional limit A = 1, which 
occurs for a one-dimensional surface elevation spectrum. In the linear case wt is 
determined from 

vt is isotropic ; 

definitions ( 3 . 1 6 ~ )  and (3.16b). 

vt = Fd1) [g,,(vt)li. 
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In the nonlinear case vt is determined from 

vt = Fl(1) [ f l l l ( V t ) I ~ .  

The ratio between the linear and the nonlinear velocities vt depends on the actual 
spectrum, water depth and bottom roughness, but is likely to be smaller than one. 
Turning the argument around: suppose a given spectrum F ( k )  would induce a 
turbulent velocity vt according to the nonlinear parameterization. A spectrum p(k) ,  
given by [F1(1)/Fs(1)]2F(k) x 6F(k) (see figure 2), would then induce the same 
velocity in the linear parametrization. The spectrum 3 corresponds to a significant 
wave height, which is 2.5 times the significant wave height found with the spectrum 
F .  The dissipation rate is thus expected to be larger in the case of a nonliner 
parameterization, for a given wave spectrum, water depth and bottom roughness. 

4. Examples of the generalized parameterization 
The linear eddy-viscosity model and the quadratic drag law are examples of a 

linear and a nonlinear parameterization respectively. The eddy-viscosity model 
parameterizes the stress in the boundary layer. This implies t’hat the stress and 
velocity profiles in the bottom boundary layer can be computed as well as the energy 
dissipation. The drag law parameterizes the bottom stress and yields only the energy 
dissipation. Two eddy-viscosity models will be discussed : one developed by the 
author and the other given recently by Madsen et al. (1989). The different forms of 
the eddy-viscosity and the drag-law dissipation functions can be explained from the 

4.1. A spectral eddy-viscosity model 

In the eddy-viscosity model the turbulent stress is related to the vertical gradient of 
the velocity through an eddy-viscosity coefficient E : 

results of $3. 

A one-layer model is used here: E = KU*Z throughout the boundary layer, with 
K = 0.4 the von KBrmBn constant and u* = (T!). 

According to (4.1) the stress and the stream function are related through 

&Ti = - KU*Z@tZZ, 87; = KU*Z@/:,,. (4.2) 
From (4.2) and the boundary-layer equations (2.6a) r1 and lyl can be determined. 
This will be done in terms of !&; using (2.10), (2.12) and (3.13) (with vt = u*) it follows 
that i l  

T* - - -T*=O.  (4.3) 
K Z  

kzz 

The boundary conditions are as given in (2.11). From Abramowitz & Stegun (1965, 
ch. 9) the solution can be determined in terms of Bessel functions of integer order, for 
example in terms of the zero-order Kelvin function Ker + i Kei, as 

T;” =-- 
Ker’( 5) + i Kei’( 6)  

?jK5 Kero(Eo) + i Keio(go) ’ (4.4) 

with argument 6 = [4kz/~]f. Here the prime denotes the derivative with respect to 6 
and the subscript zero for 6 denotes the value in z = zo. The bottom stress 
components are thus related to the free-stream velocity components according to 
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FIGURE 3. The modulus 7k of the stress components and the modulus Uk-uk of the defect velocity 
components, made dimensionless with their value at the bottom, as a function of the dimensionless 
height 6,  for example roughness lengths to = 0.01 and 5, = 0.5. Solid line, stress; dashed line, defect 
velocity. 

The boundary layer is defmed as the layer where the velocity deviates significantly 
from the free-stream velocity. The thickness of the boundary layer is determined by 
the decay with height of the so-called defect velocity (the free-stream velocity minus 
the boundary-layer velocity). The modulus of the defect velocity and of the stress, 
normalized by their value a t  the bottom, are given in figure 3 for two example bottom 
roughness lengths. It is clear that for 6 z 7 the defect velocity deviation is less than 
1 YO and the stress is less than 3 YO of its bottom value (this holds for scaled roughness 
lengths to up to about 1). A height 6 z 7 corresponds to ( y + h )  N 51, with 1 = u * / w  
and A = 0.7. Therefore the boundary-layer thickness can be taken as d N 51. 

From general dimensional arguments an inertial sublayer with a logarithmic 
velocity profile is expected, if there is a range of distances y + h  such that 
( y + h ) / k ,  % 1 and ( y + h ) / d  Q 1 simultaneously (Tennekes & Lumley 1972). This is 
only possible if k,/d Q 1 or, equivalently, if go + 1. The eddy-viscosity par- 
ameterization then allows for an inertial sublayer, as in the limit for small arguments 
the velocity profile is logarithmic and the stress is constant with height. 

The energy dissipation is given by (3.15) as 

with Tk now defined in (4.4). The parameterization (4.5) allows for a phase shift f;k 

between a bottom stress component and a free-stream velocity component, because 
Tk is complex. A phase shift diminishes the energy dissipation through the factor 
T,+ TZ = 2(T, TZ)r cos (&). In  figure 4 the functions T,+ TZ and T, TZ are given. The 
energy dissipation depends nonlinearly on the bottom velocity spectrum and the 
bottom roughness through the friction velocity u*, which is determined from 
u* = CT\~F'(A), with the variances cI1 and C T ~ ~  defined by (3.5). 
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Scaled roughness length, to 
FIQURE 4. The spectral energy dissipation (4.6) is proportional to c(co) + c(&,) and to the 

average friction velocity u*, which is determined from Tk(,Fo) e(lo). 

4.2. A spectral model using a representative monochromatic wave 
Recently Madsen et al. (1989) have presented an eddy-viscosity model for the random 
wave case. They also use a one-layer model, but with a different definition for the 
friction velocity: u* = (2r i ) f .  With this definition the friction velocity depends on 
the total stress only and not on the directional distribution of the stress spectrum. 
Strictly speaking this model does not comply with the definition ( 3 . l a ) ,  but it does 
fall in the class of linear parameterizations and the results of 93 apply. For a given 
directional distribution, (2734 is proportional to and larger than (&. 

Solving the boundary-layer equations, Madsen et al. arrive at an expression for the 
bottom stress similar to (4.5) with (4 .4) .  Two approximations are then made: 

(i) a logarithmic approximation for the Kelvin function, which is only valid for 

(ii) the wavenumber in 
E,, 4 1 (Madsen et al. 1989); 

is replaced by a 'representative' wavenumber. 
The second approximation makes it possible to write the friction velocity as 

(4.7) 
with U = (q + U$. Neglecting subsequently the phase shift between the bottom 
stress and the free-stream velocity, which is again only allowed for small to, it is 
found that 

u* = ( T , T , * ) ~ ( Z U ~ ) $  = &M ( z ~ a ) t ,  

Apart from a factor d2 this is Collins' expression for the energy dissipation due to 
bottom friction (see 34.3). The coefficient cDM can be computed numerically or an 
experimentally determined expression can be used. 
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This model differs from the one presented in $4.1 primarily in the approximations 
which are made to obtain (4.8). The neglect of the wavenumber dependency of the 
function Tk will be discussed in $4.4. The first approximation is valid for small values 
of the scaled roughness Eo, which are associated with a flat sea bed. This occurs when 
the orbital bottom velocity U is small and there are no tide-generated sand ripples. 
Evidently, U should not be so small that the boundary layer is no longer fully 
turbulent. However, a scaled roughness of the order 0.01 yields a dissipation rate 
which is negligible compared to other mechanisms which are important for ocean 
waves, like the wind input or dissipation by whitecapping (Weber 1991). 

4.3. The drag law 
In the quadratic drag law the bottom stress is parameterized as 

Tt(20) = C D  uu$,. (4.9) 

For monochromatic rough turbulent flows C ,  has been determined experimentally as 
a function of k, w/U (see for example Jonsson 1980). 

As $, = cb U,  the drag law can be considered as a degenerate case of (3.13), with 
= C& and t ,  = ck U, (i  = 1,2). This implies that flit = ( t : )  = c , ( q ) .  The 

wt = C\(U$(F~(A) cos2 (G)+F,(A) sin2 (G)), (4.10) 

with A = 1 - (q)/(q). The linearized form of (4.9), which effectively determines 
the energy dissipation, now follows from (3.13) as 

characteristic velocity vt is found from (3.163) as 

with vt as defined in (4.10). The energy dissipation is given by 

F(k) .  
a k -F(k) = -2d  v 
at tsinh2kh 

(4.11) 

(4.12) 

This expression is equivalent to the one given by Hasselmann & Collins (1968). 
From a limited number of numerical hindcasts they estimated cD = 0.015. Note that 
this value applies to the first harmonics of the stress (4.11) and to the energy 
dissipation (4.12), but not to the original drag law (4.9). The use of a constant drag 
coefficient is probably not adequate for wave forecasts, taking into account the range 
of k, w/U values which can occur for storm waves in shallow water (Shemdin et al. 
1978). 

Collins (1972) proposed to approximate the energy dissipation (4.12) by replacing 
the characteristic velocity (4.10) by vt = c k ( V ) t ,  which corresponds to a drag law 
T~(z,,) = c ,<P) i  U,. This ‘ approximation ’ is essentially an alternative formulation of 
the drag law for a random wave field, as this relation cannot be derived from the drag 
law (4.9) used by Hasselmann & Collins. 

4.4. Comparison 
4.4.1. Spectral v e r s u ~  ‘monochromatic ’ approach 

Under stationary and homogeneous wind conditions an initial wave spectrum 
develops until saturation is reached. The spectral shape is preserved during the 
evolution, owing to third-order wave-wave interactions. The total energy increases 
and the energy-containing range of the spectrum shifts to lower frequencies, because 
of the transfer of energy by the resonant interactions. Equilibrium is attained when 
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the sum of the wind input, the dissipation by whitecapping and the nonlinear energy 
transfer is zero over the whole spectral range (JONSWAP 1973). In shallow water the 
influence of the bottom is felt as soon as the wave-induced bottom velocity has 
become large enough to give rise to a bottom boundary layer. Equilibrium is reached 
in an earlier stage than in deep water, because of the additional dissipation due to 
bottom friction. The evolution depends crucially on the balance on the low-frequency 
face of the spectrum between the input of energy by the nonlinear transfer and the 
dissipation by bottom friction (Weber 1988). 

Under these idealized circumstances the spectrum is self-similar. It can be 
represented by one parameter, which basically denotes the state of development of 
the wave field. Moreover, the bottom velocity spectrum is initially narrow. For such 
spectra the wavenumber in can be replaced by a representative wavenumber. The 
wave component with maximum energy gives a good representation (Weber 1991) 
and the second approximation made by Madsen et al. is fully justified for these cases. 
In very shallow water the bottom velocity spectrum is broader, because more wave 
components extend down to the sea floor. In figure 5 ( a )  an example is given of the 
variation of the coefficient C (defined in (3.17)) over the energy-containing spectral 
range. The value which is found using the peak wavenumber is also indicated. A 
‘monochromatic ’ approach is thus seen to overestimate the dissipation at  lower 
frequencies and to underestimate the dissipation at  higher frequencies. In the 
evolution of the spectrum this could be significant, in view of the role bottom 
dissipation and the nonlinear transfer play on the forward face of the spectrum. 

In realistic situations the wind field is often inhomogeneous and changeable. The 
spectral evolution is not so straightforward then as sketched above. The spectrum 
loses its self-similar form and double peaks can appear. Examples are swell 
interacting with wind-sea or waves generated by a fast-turning wind field. In the 
case of swell, the dissipation would be largely overestimated by the use of the 
wavenumber with maximum energy, see figure 5 ( b ) .  This is usually the peak of the 
wind-sea spectrum. When there is a sudden shift in the wind direction, a new wave 
spectrum develops in the new wind direction. It is not possible to define a 
representative wavenumber during the transformation from the old to the new wind 
direction. In some of these cases a representative wavenumber can possibly be 
defined from the bottom velocity spectrum, taking into account the actual variation 
in the Kelvin functions in the spectral formulation. In other cases a full spectral 
approach has to be used. A further evaluation of the importance of spectral effects 
has to come from numerical experiments (with explicit calculations of the resonant 
four-wave interactions) or from field measurements. 

4.4.2. Eddy-viscosity model versus the drag law 
The eddy-viscosity model and the drag law differ firstly in the function which 

relates the bottom stress to the free-stream velocity. In the eddy-viscosity model q 
is defined by (4.4). It is complex and hence allows for a phase shift. In the drag law 
q is given as ck ; the wavenumber dependency and the phase shift are neglected a 
priori. The drag coefficient is often taken as constant or an expression is used which 
has been determined experimentally for monochromatic waves. In the latter case a 
representative wave has to be determined from the random wave field, which is not 
necessarily possible. The eddy-viscosity dissipation and the drag law can be 
reconciled partly by defining the drag coefficient as ck = T,, with defined by (4.4). 
This introduces a phase shift in the first-harmonics part (4.11) of the drag law. The 
drag-law expression and the eddy-viscosity expression would then depend in a 
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FIQURE 5. (a) The coefficient C aa a function of non-dimensional wavenumber kh for an example 
single-peaked spectrum with a significant wave height of 6.5 m and a peak frequency of 0.09 Hz in 
15 m water depth. The non-dimensional peak wavenumber is kpA = 0.8. Solid line, the spectral 
eddy-viscosity model; dashed line, monochromatic approximation. (a) As in (a) but now for an 
example double-peaked spectrum with a significant wave height of 2.0m and peaks at 0.3 and 
0.06 Hz in 15 m water depth. The wave height, which can be associated with the swell, is 0.8 m. The 
non-dimensional peak wavenumbers are k, A = 0.5 and k, h = 6.0. (Bottom dissipation is relevant 
for M c 2.5). Solid line: the spectral eddy-viscosity model. Upper d d e d  line, monochromatic 
approximation using the wind-sea peak ; lower dashed line, monochromatic approximation using 
the swell peak. 

similar way on the scaled bottom roughness. The drag-law dissipation would 
however be stronger due to the functions Fl and F, which occur in (4.10). These take 
larger values than the function F3 which occurs in the linear formulation. 

The second point is the different phase dependency of the two parameterizations. 
4 m m  232 
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H ,  (m) k, h f, (Hz) (mi (m/s) 
Texel 7 1.1 0.086 0.60 
Euro 5 1.4 0.110 0.45 

TABLE 1. Wave parameters for the stations Texel (depth h = 30 m) and Euro (depth h = 25 m) on 
3 January 1976. The spectra have an angular distribution with A = 0.7. The equilibrium values of 
the significant wave height Hs, the non-dimensional water depth k, h, the peak frequency f, and the 
r.m.8. bottom velocity (U)* are given. 

In the eddy-viscosity model the relation (4.5) between the bottom stress and the free- 
stream velocity is linear in the random wave phase. The characteristic velocity u* 
is isotropic. The drag law (4.9) is nonlinear in the random wave phase. The 
characteristic velocity (4.10) therefore depends on the direction of a wave component. 

For stationary flows the eddy-viscosity concept and the drag law are compatible. 
Extension of these models to oscillatory flows introduces a phase shift, which has to 
be included in the drag law in order to reconcile the two models. 1.n the random wave 
case a reconciliation is only possible if the first harmonics of the drag law are 
considered. The nonlinear formulation (4.9) is basically incompatible with the linear 
eddy-viscosity parameterization (4.5). 

4.5. Applications 
Two examples will now be given to illustrate the different models. The examples are 
taken from a severe depth-limited storm which occurred in the southern North Sea on 
3 January 1976. This storm has been analysed by Bouws & Komen (1983) and Weber 
(1991). There are measurements of the wave spectrum from two stations off the 
Dutch coast, about 200 km apart. At both stations an equilibrium was established, 
which persisted for about 12 h. Some parameters for the equilibrium wave fields are 
given in table 1. 

The local change in the wave spectrum is given by the balance between wind input, 
dissipation at  the surface and at the bottom, the transfer of energy within the 
spectrum by resonant wave-wave interactions and the advection of energy by 
propagation. The terms in the energy balance can be computed from the measured 
data. During the equilibrium phase of the storm the local change is zero : a value for 
C which minimizes the local change thus adequately represents the equilibrium phase 
of the storm. This yields C = 0.014 m/s for the station Texel and C = 0.015 m/s for 
the station Euro. The errors in this estimate are determined by the state of the art 
in wave modelling (WAMDI group 1988). These values correspond to a local change 
in the spectrum, which is two orders of magnitude smaller than the individual 
sources and sinks. This gives some weight to the reliability of the estimate. 

The dissipation coefficient G can also be computed directly from the eddy-viscosity 
model, using the measured data. A value is needed for the roughness length in order 
to do this. In Weber (1991) it is proposed that a constant roughness value 
(k, = 4 cm) is used and then check a posteriori whether this value is consistent with 
the flow conditions. The ripple regimes for the two stations were estimated from the 
local bed material. It was found that the bed is flat for U < 15 om/s, whereas sheet 
flow occurs for U > 70 cm/s. In the former case the roughness is given by the sand 
grain diameter, in the latter it is determined by the flow itself (Wilson 1989). In the 
intermediate range ripples are present and the roughness scales with the ripple 
height. During the equilibrium phase of the storm U is 60 cm/s at  Texel and 45 cm/s 
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at Euro. This corresponds to so-called transition ripples, with a steepness of about 
0.1 and a ripple height of 1-2 cm. This is consistent with the proposed roughness 
value. 

According to the linear eddy-viscosity model the friction velcoity vt = u* follows 
from (3.16a), (3.5) and (4.4), with F(k)  as measured during the equilibrium phase of 
the storm. The computation converges for both stations within ten iterations, with 
u* = 6 cm/s (Texel) and u* = 6 cm/s (Euro) respectively. The ratio k, U*/V between 
the roughness length and the thickness of the viscous sublayer is of the order lo3, 
which means that the flow is indeed fully rough turbulent. The expansion parameter 
8 is 0.004 for both stations. This yields a boundary-layer thickness d = 5u*/w of 
55 cm (Texel) and 35 cm (Euro). Wavelengths range from 100-200 m. The Reynolds 
number R = Ud/v is of the order 10’. The values found for k, u*/v, Sand R show that 
the assumptions made to derive the bottom dissipation expression are justified for 
the applications considered here. From the computed values for the friction velocity 
and the scaled bottom roughness (6, = 0.4) the coefficient C (for the peak frequency) 
can be determined using (4.4) and (3.17). This yields C = 0.016 m/s (Texel) and 
C = 0.015 m/s (Euro), which is quite close to the values estimated from the data. 

The eddy-viscosity model by Madsen et al. is formulated in terms of a drag 
coefficient. Taking the option to determine this coefficient from the data it follows 
that for Texel cDM = 0.008 and for Euro cDM = 0.012. The Hasselmann & Collins 
expression depends on the direction of a wave component relative to the main axis 
of the bottom velocity spectrum. For the main direction a drag coefficient cD = cDM 

would fit the data. The value cD = 0.015 would yield a dissipation rate which is much 
too high. Computing the drag coefficient from Jonsson (1980), who gives an 
experimentally determined expression in terms of the parameter 1/2U/k,  w ,  one 
finds cD = 0.015 for Texel and cD = 0.020 for Euro. (These values are larger than the 
ones determined from the data, because of the hypergeometric functions in (4.12) and 
the factor 4 2  in (4.8).) 

The two examples considered here demonstrate that the coefficient C can be 
computed with the roughness length fixed. This seems a better option than to fix the 
drag coefficient, as proposed by Hasselmann & Collins. There is no indication that a 
nonlinear parameterization yields a better estimate of the spectral energy dissipation 
due to bottom friction than a linear parameterization. As the data are obtained 
under equilibrium conditions, it  is to be expected that there is no significant 
difference between a spectral description and a description in terms of the peak 
frequency. This is indeed the case if the drag coefficient cDM is estimated from the 
storm data. If an experimentally determined expression is used for the drag 
coefficient in the ‘monochromatic ’ eddy-viscosity model, the dissipation rate is much 
too high. The close agreement between the values for C computed from the eddy- 
viscosity model and the values estimated from the storm data suggests that this 
model can be successfully applied in wave modelling. 

5. Summary and conclusions 
The energy dissipation of random ocean waves due to friction in the turbulent 

bottom boundary layer has been computed, using an expansion in the parameter 8. 
Here 8 denotes the ratio between the boundary-layer thickness and a wavelength. 
The turbulent stress retards the flow near the bottom and thereby induces order4 
modifications in the pressure and the velocity above the boundary layer. These work 
their way up through the water column and finally modify the surface elevation. The 

4-2 
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modifications are determined by the bottom stress and the wave phase velocity; they 
fall off exponentially away from the bottom. The spectral energy dissipation can 
therefore be expressed in terms of the bottom stress and the free-stream bottom 
velocity. This result is valid at first order in wave steepness, under the assumptions 
that S is small, that the flow is fully rough turbulent and that the stress can be 
parameterized in terms of the free-stream bottom velocity. 

The boundary-layer equations suggest a certain form of stress parameterization. 
This basic form is used in the next step, with the average or the instantaneous 
friction velocity as the velocity scale. The resulting two formal parameterizations are 
used to investigate the dependence of the dissipation expression on the stochastic 
characteristics of the stress. It was found that a linear parameterization (average 
friction velocity) yields a dissipation coefficient which is isotropic. A nonlinear 
parameterization (instantaneous friction velocity) yields a directionally dependent 
dissipation coefficient. The dissipation rate is stronger in the case of a nonlinear 
parameterization than in the case of a linear one. 

One dissipation expression developed by the author and three expressions existing 
in the literature are discussed within the framework of the formal theory. The models 
discussed are : a linear eddy-viscosity model developed by the author for random 
ocean waves, an eddy-viscosity model given by Madsen et al. based on an 
‘equivalent’ monochromatic wave (1989), the drag law as used by Hasselmann & 
Collins (1968) and an approximation to this drag-law expression given by Collins 
(1972). 

The model by Madsen et al. differs in a number of respect,s from the model 
developed by the author ; most importantly, it approximates the random wave field 
by an ‘equivalent ’ monochromatic wave instead of retaining a spectral description. 
A spectral approach and a monochromatic approach are equivalent for narrow and 
single-peaked bottom velocity spectra. These occur under homogeneous and 
stationary wind conditions, in moderately shallow water. In extremely shallow water 
the bottom velocity spectrum is broader. If the wind field is inhomogeneous and 
changeable the spectrum loses its self-similar form, so that there is no representative 
wavenumber. Examples are swell interacting with wind-sea or waves generated by 
a fast-turning wind field. For most of these cases a full spectral model has to be used. 

The eddy-viscosity model is linear in the random wave phase, whereas the drag law 
is nonlinear. This explains the differences between the eddy-viscosity expressions and 
the Hasselmann & Collins expression. The dissipation coefficient, is isotropic in the 
case of the eddy-viscosity model, whereas it is directionally dependent in the 
Hasselmann & Collins expresion. (Collins approximates this expression by leaving 
out the directional dependency.) The drag law relates the dissipation rate to the non- 
dimensional bottom roughness by means of a drag coefficient, which has to be 
determined experimentally. This relation is computed from the stress parameteri- 
zation in the eddy-viscosity model. The two models can be partly reconciled by 
defining the drag coefficient to be equal to the analogous function in the eddy- 
viscosity model. 

The eddy-viscosity model agrees rather well with data from two cases of storm 
waves in shallow water. There is no indication in these examples that a nonlinear 
parameterization performs better than a linear one. It is proposed that a fixed 
roughness length is used in the eddy-viscosity model. This seems a better option than 
a fixed drag coefficient as proposed by Hasselmann & Collins. The eddy-viscosity 
model is self-contained, but takes about 30 YO more computing time than the drag law 
because of the iterative determination of the friction velocity. The iteration is 
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convergent, on the condition that the friction velocity does not depend strongly on 
the roughness length. This justifies the assumption of a fixed roughness length, 
whereas in reality ripples grow and decay dynamically with the wave field. The 
computation converges in practice within ten iterations. 

A rough test of the different models is to implement the dissipation expressions in 
a shallow-water wave model and to compare the model performance with wave 
measurements. The validation then depends on how accurately other physical 
processes are represented in the wave model. Hindcasts of an extreme storm and a 
case of swell in a depth-limited sea are discussed in Weber (1991). 

Direct validation could be done using measurements of the turbulent bottom 
stress, or of the boundary-induced order4 pressure fluctuations above the wave 
boundary layer. This is up till now impossible, because of the scarcity of field or 
laboratory data on the random wave boundary layer. Recently there have been a 
number of experiments on continental shelves in combined wave-current situations, 
see Huntley & Hazen (1988) for an overview. Unfortunately all measurements are 
taken well above the wave boundary layer. Moreover, in all of these experiments the 
random wave field is reduced to a representative monochromatic wave, although 
Huntley & Hazen point out the difficulties in selecting a representative wave 
direction, frequency and amplitude. Hopefully, this study provides a basis for future 
modelling and measurments which take the randomness of the wave field into 
account. 
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versions of the manuscript. Financial support was provided by the research 
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Appendix 

are derived. 
A. 1. Horizontal coordinate system 

The horizontal coordinate system at z = z,, can always be chosen such that u12 = 0. 
If t ,  and t ,  are jointly Gaussian, their joint distribution function is 

In this Appendix all results related to ensemble averaging, which are needed in $3, 

1 
f(t) = - exp [ -+(TtA-lt)] 

(27cD)f 
with 

The tildes denotes values with respect to the original coordinate system. As A-' is 
symmetric, there exists a real unitary matrix U such that TUA-lU is a diagonal 
matrix. Straightforward algebra shows that U is a rotation through q5, with q5 defined 
by q5 = 4 arctan (25,,/(dll - 2,,)) 
and 

where crll and cr,, are relative to the rotated coordinate system. 
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u,, < vll can always be achieved by interchanging the role of the xl- and x2-axes. 
The coordinate system which has v12 = 0 then yields the maximum value for u,, and 
the minimum value for v2,, as compared to all other possible coordinate systems. 

A surface elevation spectrum, which has an axis of symmetry, always has u,, = 0 
in a coordinate system with the axis of symmetry as the x,-axis. This follows from 
the definition (3.5) of u12 : 

A.2. Derivatives of the bottom stress 

If ri is linear (&TO = ( T X ) ~ %  1 kt = (tY>"Tk. i k  

On the other hand, if rt is nonlinear, it  follows from the definition (3.1 b) of r1 and 
the definition of 74 that 

Therefore, if ri is nonlinear 

This implies that 

(&) = {(7i+$)$+(y)2}4 = {(t+;)$+(&}%, tit, kz 

and analogously for 7,. 

A.3. Average quantities 
All average quantities are computed relative to the coordinate system, which has 
v12 = 0 and v2, < u,,. By definition 

1 (t; + t$ exp [--(-+:)I 1 t: dt, dt,. 

2 U11 
Write 

t, = c&scosa, t ,  = ui,ssina 

and transform to the variables s, a: 

<t> = & (all cos2 a + v2, sin2 a)is2 exp ( -2s.") ds da 

= 4 l ( 1  -At-); (1 - r ) t r - idr  s2 exp ( -is2) ds. 
Ic 

with A = 1 - cr22/u11 and r = sin2 a. 

found that 
Evaluating these integrals (see Abramowitz & Stegun 1965, ch. 7 and 15) it is 

(t) = a~,g(2*)aF(-g,i, i , A ) ,  
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with F a hypergeometric function. In  an analogous way: 

($) = a4,*(2n)b7(&4,2,A), 
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(ti> = ai12ff (4)P(- i , i ,  l , A ) ,  

a,, = 0 implies that ( y )  = 0. 

From Gauss' relations for contiguous hypergeometric functions it follows that 

Wll  = ( t + ? )  = a~,f(2n)"(- i ,S,2,A),  

w,, = ( 2 4 )  = a ~ , ~ ( 2 n ) t F ( - g , ~ , 2 , A ) .  

The nonlinear velocity wt is now given by 

= wll(cos 8 cos 4 +sin 8 sin q5), + w2,(cos 8 sin 4 -sin 0 cos q5)2 

= vll cos2(8-#)+w22 sin2(0-$), 

where k; and k; denote k,( = k cos8) and k,( = k sin 8) relative to the rotated 
coordinate system, 6 = 8-4 is the angle between a wave component and the main 
axis of the bottom stress spectrum. 

The linear velocity wt follows from 

wt = (ti)>" = ail d2r(4)2F(  -a,;, l ,A)2. 

All hyprgeometric functions used have a maximum of 1 at A = 0. 
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